The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by NsrR and upregulated in response to nitric oxide.

نویسندگان

  • Anne K Dunn
  • Elizabeth A Karr
  • Yanling Wang
  • Aaron R Batton
  • Edward G Ruby
  • Eric V Stabb
چکیده

Alternative oxidase (AOX) is a respiratory oxidase found in certain eukaryotes and bacteria; however, its role in bacterial physiology is unclear. Exploiting the genetic tractability of the bacterium Vibrio fischeri, we explore the regulation of aox expression and AOX function. Using quantitative PCR and reporter assays, we demonstrate that aox expression is induced in the presence of nitric oxide (NO), and that the NO-responsive regulatory protein NsrR mediates the response. We have identified key amino acid residues important for NsrR function and experimentally confirmed a bioinformatically predicted NsrR binding site upstream of aox. Microrespirometry demonstrated that oxygen consumption by V. fischeri CydAB quinol oxidase is inhibited by NO treatment, whereas oxygen consumption by AOX is less sensitive to NO. NADH oxidation assays using inverted membrane vesicles confirmed that NO directly inhibits CydAB, and that AOX is resistant to NO inhibition. These results indicate a role for V. fischeri AOX in aerobic respiration during NO stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alternative route to nitric oxide resistance.

Vibrio fischeri is a bioluminescent bacterium that enters into a symbiosis with the bobtail squid Euprymna scolopes. The bacterium colonizes a specialized light organ, in which it generates light that might help the squid to hide its silhouette from animals beneath it. Previous studies have shown that the host nitric oxide (NO) synthase is active during colonization, suggesting that V. fischeri...

متن کامل

Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis.

Nitric oxide (NO) is implicated in a wide range of biological processes, including innate immunity against pathogens, signal transduction and protection against oxidative stress. However, its possible roles in beneficial host-microbe associations are less well recognized. During the early stages of the squid-vibrio symbiosis, the bacterial symbiont Vibrio fischeri encounters host-derived NO, wh...

متن کامل

Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate

Phosphate starvation compromises electron flow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing flow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under phosphate starvation, Arabidopsis thaliana seed...

متن کامل

Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate

Phosphate starvation compromises electron flow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing flow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under phosphate starvation, Arabidopsis thaliana seed...

متن کامل

Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 2010